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The results of point-particle Eulerian–Lagrangian direct numerical simulation (DNS)
calculations of dilute particle-laden turbulent channel flow are used to study the effect
of the particles on the local flow topology. It is found that in the viscous sublayer,
the flow becomes increasingly more two-dimensional as the two-way coupling effect
(due to interaction between particles and fluid flow) increases with increasing particle
load. Beyond the viscous sublayer the modifications in flow topology are not strongly
related to the preferential concentration of particles in the flow field, which is in
contrast to previous channel flow simulations. The effect of particles on the turbulent
flow beyond the viscous sublayer is mostly a result of the overall changing near-wall
dynamics of the fluid flow.

1. Introduction
For several decades it has been known that adding solid particles to a turbulent

fluid flow can result in a modification of the turbulence characteristics. To be able
to isolate separate modulation effects the Euler–Lagrange approach with direct
numerical simulations (DNS) or large-eddy simulations (LES) have been shown
to be effective tools in the study of particle-laden flows. Several two-way coupled
numerical studies have been focused on turbulence modulation in homogeneous,
isotropic turbulence (see for instance Squires & Eaton 1990; Elghobashi & Truesdell
1993 and Boivin, Simonin & Squires 1998), whereas others have been focused on
turbulent homogeneous shear flow (see Ahmed & Elghobashi 2000).

For fully developed particle-laden wall-bounded flows a fairly limited amount of
studies have been reported on turbulence modulation effects using DNS or LES
results. Yamamoto et al. (2001) carried out an LES study for a particle-laden flow
in a channel. A similar study was performed by Li et al. (2001), who made two-
way coupled DNS calculations for a channel flow, but at a much lower Reynolds
number and finer resolution with also considerably smaller particle inertia than that
of Yamamoto et al. (2001).

† Email address for correspondence: g.ooms@tudelft.nl
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The objectives of our study are to perform high-resolution Euler–Lagrange DNS
calculations for a turbulent particle-laden flow in a two-dimensional channel and to
use the results to improve our understanding of the physics of particle–turbulence
interaction in wall-bounded flows. In this publication we will focus on the change
in local flow topology due to the presence of the particles. A unique description of
local flow patterns was introduced by Chong, Perry & Cantwell (1990). Their general
classification scheme, which is based on invariants of a smooth three-dimensional
vector field, provides a method to study the full range of turbulent scales. With this
scheme it is possible to combine local flow patterns in physical space with their
structural properties in the space of invariants. Since Chong et al. this topology
invariant technique has further matured and became, apart from visualization
purposes, a popular tool to investigate many fundamental questions in turbulence.
So far various flow conditions have been studied using this technique, for instance,
isotropic turbulence (Ooi et al. 1999), free shear flows (Soria & Cantwell 1994; Soria,
Ooi & Chong 1997), vortex shedding (Perry & Chong 1994), time-developing mixing
layers (Soria et al. 1994), turbulent boundary layers (Chacı́n, Cantwell & Kline
1996; Chacı́n & Cantwell 2000) and turbulent channel flow (Blackburn, Mansour &
Cantwell 1996). Even though the large-scale characteristics among these studies are
totally different, it turned out that most topology invariant plots of the velocity fields
have a similar tear-drop shape. This universal character appears however to diminish
in the direct vicinity of a no-slip wall (this holds particularly in the viscous sublayer,
see Blackburn et al. 1996).

Applications of the local topology method to a turbulent particle-laden flow were
introduced by Rouson & Eaton (2001). In their one-way coupled turbulent channel
flow study, the approach of Blackburn et al. was chosen to support the idea that
particle segregation should have some preference for specific kinds of coherent flow
structures. Light particles showed a tendency to avoid the strongest vortical, and
vortex-stretching regions, whereas the larger inertia particles did not show a strong
preference for any of the topological regions. This effect was most pronounced in the
viscous sublayer and became weaker with increasing distance from the wall. More
recently, a similar kind of study was performed by Picciotto, Marchioli & Soldati
(2005). Instead of analysing the non-randomness of the particles throughout the entire
channel width, their study focused on smaller inertia particles and used this topology
analysis as a kind of objective measure to improve the understanding of short- and
long-term particle accumulation processes in the near-wall region.

Our DNS calculations differ from earlier ones by considering a significantly higher
spatial resolution, a larger streamwise channel length and larger mass loadings. We
restrict ourselves to point particles and ignore gravity effects. In our simulations the
mass fraction ranges between φm = 0 and 0.65, the Kolmogorov-based Stokes number
(St) ranges between 1 and 7 and the dimensionless wall-unit scaled particle relaxation
time ranges between 14 and 111. Figure 1 shows the span of our simulations in the
Elghobashi turbulence modulation map (Elghobashi 1994) with St, particle volume
fraction and length ratios as parameters on the axes. According to this map our
simulations are globally dilute flows in the heart of the region with two-way coupling.

2. Details of DNS calculations
The total volume fraction of the particles is assumed to be always much smaller

than the considered control volume in the channel. In order to track the particles
in the flow field the Lagrangian trajectory of each individual particle is calculated.



DNS analysis of local flow topology in a turbulent channel flow 37

101

102

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8
10–110–2 100 101 102 103 104

Four-way

Two-way

One-way

�L
Dp

�k

~ Our simulations

StK

φv

D
en

se
D

il
ut

e

Two-phase flow

ε

Figure 1. Turbulence modification; based on Elghobashi (1994). �L is the size of a grid cell,
Dp is the particle diameter and StK is the Stokes number based on the Kolmogorov length
scale.

The equation of motion for a particle is complex, because it depends on several
forces acting on it. From a numerical point of view it is rather expensive to compute
the complete forcing term for each individual particle, particularly because millions
of particles are considered. Therefore, we assume in our calculations that the ratio
between particle density and fluid density is very large. In that case the particle
trajectories are mainly determined by Stokes drag,

Fi

(
x

(n)
j

)
� 3πµDp

(
U

(p)
i − Vi

)
, (2.1)

where Fi(x
(n)
j ) is the force acting on the nth particle, x

(n)
j is the spatial coordinate of

the nth particle, µ is the dynamic viscosity, Dp is the particle diameter, U
(p)
i is the

fluid velocity at the position of the nth particle and Vi is the particle velocity. As
the particles are assumed to be significantly smaller than the smallest flow scale, the
particle feedback force Fi is modelled using a simple point-particle approach. (We
will come back to this point in more detail.)

A standard finite-volume single-phase solver with a semi-implicit coupling scheme
is used to solve the incompressible Navier–Stokes equations for the continuous
phase. The numerical method of the flow solver is essentially based on a two-
step predictor-corrector approach. First, an explicit second-order Adams–Bashforth
method is used for the time advancement of both the convective and diffusion
terms, where the discretized time-step is determined by a standard Courant stability
criterion. This part also includes the driving force to maintain the flow, i.e. the fixed,
external pressure gradient in the streamwise direction. After this provisional velocity
distribution is computed, a corrector step is enforced through the continuity equation.
It numerically solves the Poisson equation for the pressure, using a Fourier series
expansion in the homogeneous directions, together with tridiagonal matrix inversion
for the inhomogeneous direction.
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Grid ID Reτ Lx Ly Lz Nx × Ny × Nz �x+ �y+ �z+

3a 180 5 H 2H H 192 × 128 × 96 9.4 5.6 0.6–4.8
3b 180 5H 2H H 192 × 192 × 170 9.4 3.8 0.5–3.8
3c 180 10H 2H H 384 × 128 × 96 9.4 5.6 0.6–4.8
5a 250 5 H 2H H 256 × 192 × 128 9.8 5.2 1.1–5.1
5b 250 10H 2H H 512 × 192 × 128 9.8 5.2 1.1–5.1

Table 1. Mesh specifications.

As two-way coupling is considered, the continuous phase solver needs some
modification to incorporate the additional forces between the dispersed phase and
the carrier fluid. Our numerical implementation of this two-way coupling mechanism
is based on a straightforward explicit method, which works according to three basic
steps: first, the predictor part of the continuous phase solver is computed to predict
the fluid acceleration value without the particle forcing term, Fi . Secondly, an update
of this fluid acceleration value is carried out through incorporating the particle force
contributions, yielding a provisional update of Ui . Finally, the provisional velocity
value Ui is corrected, such that it enforces the continuity equation. So the only
difference to the unladen, or one-way coupled, simulations is formed by the second
step.

The numerical simulations share the following characteristics. For our particle-
laden simulations the motion of each particle is calculated using the aforementioned
Lagrangian tracking method, wherein only linear Stokes drag and elastic bouncing
at the wall are considered. All particles are mono-sized (Dp =10−3H ); they remain
always smaller than the smallest grid-cell dimension. H is the height of the channel.
The results are for two modest low Reynolds numbers: Reτ = 180 and Reτ = 250.
These Reynolds numbers are based on the friction velocity uτ and the half channel
height H/2. For both Reynolds numbers a similar channel geometry is used: a
streamwise channel length of either Lx = 5 H or Lx = 10 H with a spanwise width
Ly =2 H . In the streamwise (x ) and spanwise (y) directions we use periodic boundary
conditions on a uniform grid, while for the normal (z ) direction no-slip boundary
conditions and a non-uniform grid stretching are used to resolve the smallest flow
scales near the walls. Furthermore, to keep the total amount of particles constant
during a simulation, the particles are re-introduced, i.e. if they leave the computational
domain, either in the streamwise or spanwise direction, the particles are fed back in
with the same velocity at the opposite side.

For our simulations an overview of the flow geometries and grid resolutions
is given in table 1. The computational domain lengths Lx , Ly , Lz correspond to
the streamwise (x), spanwise (y) and wall-normal (z) directions, respectively. The
amount of grid points along the three directions are represented by Nx , Ny , Nz, with
corresponding grid resolutions �x+, �y+, �z+, given in wall units. A wall unit of
length and time are defined by z+ = (zuτ )/ν and t+ = (tu2

τ )/ν, respectively. ‘Short’
and ‘long’ streamwise channel domains are considered. This channel enlargement is
crucial for higher particle mass loading simulations. Obviously, longer streamwise
simulations are computationally more expensive.

Our simulation parameters are summarized in table 2. A division can be made
between the presented parameters: parameters related to the global particle mass
loading and parameters related to the particle dynamics. The parameters related
to mass loading ρp , D+

p , Np , φm and φv , denote respectively, the particle density
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Run ID Grid ID Reτ ρp D+
p Np φm φv St+ St

K

R3.0 3a−b 180 − − − − − − −
R3.1 3c 180 2000 0.36 3.161.088 0.16 8.28 ×10−5 14 0.96
R3.2 3c 180 2000 0.36 12.644.352 0.65 3.31 ×10−4 14 0.79
O3.3 3a 180 8000 0.36 1.580.544 0.64 8.28 ×10−5 58 4.0
R3.3 3a−b 180 8000 0.36 393.260 0.16 2.06 ×10−5 58 3.9
R3.4 3c 180 8000 0.36 3.161.088 0.65 8.28 ×10−5 58 3.2

R5.0 5a 250 − − − − − − −
R5.1 5a 250 2000 0.5 1.577.961 0.16 8.26 ×10−5 28 1.5
O5.2 5a 250 8000 0.5 395.352 0.16 2.07 ×10−5 111 6.7
R5.2 5a 250 8000 0.5 395.352 0.16 2.07 ×10−5 111 6.1
R5.3 5b 250 8000 0.5 3.155.922 0.65 8.26 ×10−5 111 4.8

Table 2. Simulation parameters. ‘One-way’ coupled simulations are denoted by the ‘prefix’ O.

(normalized by the gas density), the diameter of the particle (normalized by wall
units), the total number of particles in the system, the total mass-fraction of the
dispersed phase and the total volume fraction of the particles. As can be noticed, the
total number of particles within the system may become quite large (up to almost
13 million), but their bulk volume fractions remain strictly within the dilute regime
(φv � 10−3). The second group of parameters, shown in table 2, represents two Stokes
numbers (St+ and St

K
). Generally, the non-dimensional St is given by St = τp/τf : the

ratio of the relaxation time of a particle and the relaxation time of the surrounding
fluid. For ρp � 1, the particle relaxation time (τp) can be expressed in the Stokes limit
as τp = ρpD2

p/(18ν), while for the characteristic time scale of the fluid (τf ) several
measures can be chosen. In the extremes, such as very light or very heavy particles, the
particle motion behaves (approximately) as a fluid element or as a ballistic projectile.
Our particles possess ‘intermediate’ inertias, and thus lay somewhere between these
two extremes. It should be noted that these ‘intermediate’ particle inertias are of great
interest, mainly because they are known to show strong preferential concentrations.
In St+ a time scale is used based on wall units; in StK the Kolmogorov time scale is
used.

In figure 2 a sketch is shown for the distribution of the grid points (indicated
by crosses) near the wall for two cases (Nz = 96 and Nz =170). The horizontal
coordinate of the crosses gives the distance of the grid points to the wall in wall units
and their vertical coordinate the grid-stretching increments. Also, the dimensionless
Kolmogorov length scale (η+

K ) in the near wall region is shown as function of the
distance to the wall (by the solid line); its value is given along the vertical axis. The
size of the particles is given by the diameter of the black circle (expressed in wall units
as indicated by the horizontal axis). As can be seen the size of the particles (0.36+)
is considerably smaller than the Kolmogorov length scale (∼1.5+) and also smaller
than the size of the grid elements (0.5+ − 2.0+) (dependent on the value of Nz).

There is a point of concern in this type of simulation concerning accuracy.
Several two-way coupling numerical studies using the point-particle assumption in
homogeneous, isotropic turbulence have shown that this method can be used with
confidence if some specific conditions are satisfied. In particular, the particle diameter
must remain much smaller than the smallest energetic turbulent length scales and
smaller than the size of the control volume, appreciably. These criteria can be satisfied
quite easily in unbounded flow configurations such as homogeneous turbulence or
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Figure 2. Consequence of finite-sized particle ‘diameters’ on several wall-normal grid
resolutions in the vicinity of the wall (0 � z+ < 6); here the crosses denote the actual
wall-normal grid locations, whereas the vertical axis displays the corresponding interspatial
grid-stretching increments. Particle wall-touching locations of three different particle-laden
studies: black-coloured particle displays the particle diameter of our low-Reynolds-number
simulations (Reτ = 180 → D+

p = 0.36); three light grey particles depict the diameters studied

in Rouson & Eaton (2001) (D+
p = [0.25/0.45/0.63]); four dark grey particles approximately

correspond with the results of Picciotto et al. (2005) and Soldati (2005) (D+
p ≈ [0.16/0.36/

0.8/1.79]).

free-jet turbulence, but are conditions difficult to satisfy in wall-turbulent flows.
Considering the second criterion we can notice that the diameter of the particles in
our study can be of the same order as or considerably smaller than the near-wall
grid size dependent on the value of Nz (see figure 2). Satisfying the first condition
should ensure that the very local fluid deformation induced by the presence of the
particles can be neglected in the two-way coupling effect. Although the particles in
our study are smaller than the Kolmogorov length scale, this criterion remains difficult
to satisfy in the near-wall region as small riblets of particles can be formed that can
drastically change the flow behaviour. The importance of this point could be checked
by comparing our results with the results of DNS for finite-sized particles. However,
these studies (see Uhlmann 2008 and references therein) concentrate on the two-way
coupling effect of a relatively small number of relatively large particles (Np ≈ 10–1000,
D+

p ≈ 10–30) considering also the effect of gravity. Due to the particle diameter not
only the interaction with the turbulent flow structures exists, but also the influence of
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the particle wakes plays an important role. This wake effect is absent in our study.
So a comparison of these studies with our work is not straightforward.

Our code was part of an international collaborative benchmark test concerning
direct numerical simulations of particle dispersion in wall-bounded turbulence without
two-way coupling effect (see Marchioli et al. 2008). The objective was to establish
a source of data relevant for this phenomenon. Different numerical approaches and
computational codes were used to simulate the particle-laden flow and calculations
were carried on long enough to achieve a statistically steady condition for the particle
distribution. A comprehensive database including both post-processed statistics and
raw data for the fluid and the particles was obtained. Direct comparison of the
statistics allowed an observation of how well different codes performed when applied
to the same problem and how the accuracy of the results depended on the choice made
in terms of simulation parameter values. The results of our code were in agreement
with those of other codes.

3. Local flow topology
The topology of the flow at a certain point in the flow field can be studied by

analysing the following equation:

ẋi = Aijxj , (3.1)

where the vector x represents the distance to the considered point in the flow field and
Aij represents the rate-of-deformation tensor, which can be divided into a symmetric
and an antisymmetric part

Aij =
∂Ui

∂xj

=
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
+

1

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
= Sij − 1

2
εijk Ωk. (3.2)

Setting xi = Ci exp(λαt) in (3.1) the usual eigenvalue problem is derived, reading

det(Aij − λαδij ) = 0, (3.3)

which yields the cubic characteristic equation for the second-order tensor Aij

λ3
α + P

A
λ2

α + Q
A
λα + R

A
= 0, (3.4)

where P
A
, Q

A
and R

A
are the tensor invariants. Under incompressible flow conditions

the behaviour of (3.1) is governed by these three different invariants (instead of the
nine Aij components). As function of the three corresponding eigenvalues λα the
invariants are given by

P
A

= − (λ1 + λ2 + λ3) = 0,

Q
A

= (λ1λ2 + λ2λ3 + λ3λ1) = − 1
2

(
λ2

1 + λ2
2 + λ2

3

)
,

R
A

= − (λ1λ2λ3) = − 1
3

(
λ3

1 + λ3
2 + λ3

3

)
,

⎫⎪⎪⎬
⎪⎪⎭

(3.5)

where the latter alternative expressions of Q
A

and R
A

in (3.5) are simply a result of
substituting the incompressibility constraint of P

A
. So the topological classification in

P
A
−Q

A
−R

A
space is reduced to a classification in a two-dimensional Q

A
−R

A
plane.

Since the characteristic equation (3.4) is cubic and the tensor invariants are real,
at least one eigenvalue is real whereas the other two may be either real or form
a complex conjugate pair (note, when an explicit distinction is made between the
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three eigenvalues, we shall consistently present their real parts always in a descending
order: Re(λ1) � Re(λ2) � Re(λ3)). The sign of the real part of the corresponding
eigenvalues determines the behaviour of the local flow pattern: Re(λα) < 0 denotes
a stable, positive attractor, while Re(λα) > 0 corresponds to an unstable, negative
attractor. When two eigenvalues are complex conjugates (with pure imaginary parts
Im(λi , λj ) = ±iω), the flow pattern corresponds to local circular orbits, which are
perpendicularly orientated to the flow pattern corresponding to the third pure real
eigenvalue. For incompressible flow conditions this distinction between real and partly
imaginary eigenvalues corresponds to a mapping of two distinct subregions in the
Q

A
−R

A
phase plane: all roots of (3.4) are real if the discriminant D

A
< (27/4)R2

A
+ Q3

A
,

while for D
A
> (27/4)R2

A
+ Q3

A
two roots form a complex conjugate pair. Furthermore,

since only two of the three eigenvalues are independent (the third one is the sum of
the other two, because P

A
= 0), the three-dimensional topology becomes characterized

by either axial strain (R
A
< 0; real part: λ1 > 0, λ2, λ3 < 0) or biaxial strain (R

A
> 0; real

part: λ1, λ2 > 0, λ3 < 0). The different flow topologies are summarized in figure 3. The
four topological quadrants (denoted by I–IV) are subdivided by the tent-like curve
D

A
= 0 and the vertical axis R

A
= 0: (I) unstable focus/compressing (λ1,2 = (λ/2) ± iω

and λ3 = −λ< 0); (II) stable focus/stretching (λ1 = λ> 0 and λ2,3 = −(λ/2) ± iω); (III)
stable node/saddle/saddle (λ1 > 0 and λ2,3 < 0); (IV) unstable node/saddle/saddle
(λ1,2 > 0 and λ3 < 0).

Instead of presenting the invariants as a function of their corresponding eigenvalues,
the invariants of Aij may also be expressed according to the more familiar turbulence
quantities, namely, Sij and Ωi:

P
A

= −Aii = −Sii = 0,

Q
A

= − 1
2
AijAji = − 1

2

(
SijSji − 1

2
Ω2

i

)
= Q

S
+ Q

W
,

R
A

= − det(Aij ) = − 1
3
AijAjkAki = − 1

3

(
SijSjkSki + 3

4
ΩiΩjSji

)
= R

S
+ R

W
,

⎫⎪⎪⎬
⎪⎪⎭

(3.6)
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which shows that the second invariant QA consists of the difference between
strain and vorticity contributions. The strain contribution of Q

A
, represented

by Q
S
= −(SijSji/2) � 0, is directly proportional to the total viscous dissipation

(= 2νSijSij ), whereas the remaining Q
W

= (Ω2
i /4) � 0 contribution is proportional to

the total enstrophy (=νΩ2
i ). Thus, large positive (negative) values of Q

A
indicate flow

regions where enstrophy is large (small) compared to viscous dissipation. The third
invariant R

A
also consists of two contributions. However, the pure strain contribution

R
S
= − (SijSjkSki )/3 does not directly resemble a common turbulence quantity, while

instead the second part R
W
= −(ΩiΩjSji/4) corresponds to the total generation of

enstrophy by vortex stretching.
The invariants of the velocity-gradient tensor Aij consist of first-order spatial

derivative products of the instantaneous velocity fields, meaning that the typical
length scales of ∂xi

cover a range between the characteristic length scale of the mean
flow (L) and the dissipative Taylor length scale (λT ), i.e. ∂xi

∝ [L−1, λ−1
T ]. The largest

length scales will generally contribute little to the invariants of Aij , whereas the
smaller dissipative scales contribute, on average, the most to the intensities of Q

A
and

R
A
. Using classical scaling arguments (see Tennekes & Lumley 1972), it can readily be

shown that the ratio between the large length scale and Taylor length scale increases
progressively with Reynolds number (λT /L ∝ Re−1/2

m ). Hence the intensities of Q
A

and R
A

scale accordingly: AijAji ∼ Rem and AijAjkAki ∼ Re3/2
m .

4. Results
For a unidirectional flow like our channel flow, the turbulence activity and flow

topology vary as function of the inhomogeneous direction. Hence, the visualization
space of the flow topology has three dimensions: one for Q

A
, one for R

A
and one for

the distance to the wall. Since such representations are generally difficult to analyse,
we reduce (as was done by Blackburn et al. 1996) the dependence on the distance
to the wall of the joint p.d.f.s for Q

A
, R

A
to four classes by averaging over four

wall-parallel two-dimensional regions. These are the usual four regions: the viscous
sublayer (0 < z+ � 5), the buffer layer (5 <z+ � 35), the ‘log’ region (35<z+ � 150) and
the outer region (150 < z+ � Reτ ). Despite this significant reduction, the corresponding
number of p.d.f.s is still quite substantial. The reason is that for each test case four
wall-parallel volume averages are sampled at the grid points and at the in- and
outward migrating particle locations (clarifying if their possible distinct characters
are noticeable in the invariant space of Q

A
, R

A
). Therefore, we shall limit ourselves

here to the evaluation of the joint p.d.f.s as functions of mass loading and of particle
relaxation time. Many more results can be found in Bijlard (2009).

In order to present reasonably smooth and consistent joint p.d.f.s of Q
A
, R

A
, we

calculated the invariant distributions by taking the whole ensemble average of all
uncorrelated flow fields of each test case. Moreover, we considered only those test
cases which have been performed for the same grid resolution. This resolution, given
by (Nx × Ny × Nz), is 192 × 128 × 96 (for the ‘long’ streamwise channels Nx is twice as
large, though �x remains unchanged). Thus every component of the velocity gradient
tensor is calculated at each interior grid point, which then is used to determine the
local Q

A
, R

A
values of the flow at the grid points and/or at the particle locations

through trilinear interpolation. Thereafter, the results get progressively smoothed by
the ensemble averaging procedure.

4.1. Viscous sublayer (from an invariant perspective)

Figure 4 shows the volume-averaged joint p.d.f.s for QA,RA in the viscous sublayer
as a function of the mass loading. First, the joint Q

A
, R

A
distribution of the one-way
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Figure 4. Effect of mass loading on normalized joint p.d.f. of QA,RA in the viscous sublayer
(0 <z+ � 5) for the Reτ = 180 case with τ+

p � 58. (a–c) O3.3: one-way coupling; (d–f ) R3.3:
φm � 0.16; (g–i ) R3.4: φm � 0.65. (a), (d ) and (g): flow field sampled at grid locations. Flow
field conditionally sampled at particle locations, respectively, (b), (e) and (h): at inward (to
the wall) migrating particle locations and (c), (f ) and (i ): outward (to the channel centre)
migrating particle locations. The grey scales denote a logarithmic decade, ranging over six
decades.

coupling simulations, sampled at the grid locations, is considered (figure 4a). One can
notice (in agreement with other studies) that the larger excursions of the joint p.d.f.s
have a higher probability to be located in either the stable focus/stretching quadrant
or the unstable node/saddle/saddle quadrant. Note that this visual preference is
only referring to a rather weak occurrence. The reason is that the p.d.f. values are
scaled logarithmically, meaning that the majority of points lie near the origin. The
conditionally sampled particle p.d.f.s (figure 4b, c) show an almost similar behaviour
for the inward (to the wall) migrating particles, whereas the outward (to the channel
centre) migrating particles have apparently a slightly higher preference for the stable
regions, i.e. Re(λ2), Re(λ3) < 0 (topological quadrants II and III).

The two-phase coupling effect (due to the interaction between particles and
turbulence) on the joint p.d.f.s of the flow become better revealed as figure 4(d, g)
is considered. The following trend can be noticed: an increasing particle mass
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loading appears to significantly stretch the joint p.d.f.s along the Q
A
-axis, while

the distributions are (apart from the topological region D
A
< 0 and R

A
> 0) only

modestly modified in the R
A
-direction. This particle-induced intensifying behaviour

of Q
A
, without a similar amplification of the corresponding R

A
values, shows that

the local flow topology becomes increasingly more two-dimensional. As was shown
by many previous particle-laden studies (see for instance Rouson 1997; Yamamoto
et al. 2001; Marchioli & Soldati 2002; Portela & Oliemans 2003), our particles also
have a strong preference to accumulate in the low-speed streaks. The level of this
particle accumulation behaviour controls the laminarization process of the near-wall
turbulence. However, the instantaneous crossflow motions between low- and high-
speed regions are not entirely annihilated. Due to the applied wall impermeability and
continuity constraints, a kind of intense two-dimensional swirl occurs occasionally at,
or near, the stronger contrasting interfaces of the particle-dictated low-speed streaks
and flow-dominated high-speed regions. Since such wall-parallel crossflow swirls are
typically characterized by high velocity-gradients, the Q

A
values will rise.

Finally, the two-way coupling effect on the joint p.d.f.s conditionally sampled
at the particle positions (figure 4b, c, e, f, h, i ) is essentially the same as for the
one-way coupled simulation, although stronger for the inward-moving particles than
for the outward moving ones. The Q

A
, R

A
distribution of the particles migrating

towards the wall (Wp< 0) shows a reasonable match with the more active turbulent
regions of their corresponding distributions sampled at the grid points, whereas the
invariant distributions for Wp > 0 indicate that a larger fraction of the particles are
preferentially staying in the more stable and less vortical/dissipative intense regions.
Since larger excursions of the joint p.d.f.s at the inward-migrating particle locations
appear to have a greater resemblance with the joint p.d.f.s at the grid points, it
suggests that particularly these particles (which are smaller in number) have a strong
influence on modifying the extremes of the local flow topology. This indicates that two
modification processes are important: (i) the inward-moving particles are abruptly
dumping their abundant streamwise momentum in the viscous sublayer and (ii) the
more pronounced tear-drop shaped Q

A
, R

A
distribution, which (as will be shown later)

is clearly visible at larger distances from the wall, reveals that the inward-moving
particles are efficiently transferring topological information from the buffer region
towards the direct vicinity of the wall.

4.2. Viscous sublayer (from an ordinary spatial perspective)

As we have seen, some of the geometry and statistical properties of the local flow
patterns can be studied using the joint probability distributions of the two invariants.
However, they provide no information how the local flow topologies are actually
grouped in ordinary physical space. To improve on this point we have calculated a
number of instantaneous wall-parallel cross-sections of relevant flow quantities.

When first the particle and axial velocity distributions are considered (an example
is given in figure 5), one can clearly see that the vast majority of the outward
migrating particles are located in, or near, the low-speed streaks, whereas the inward
(to the wall) migrating particles are more randomly distributed. The accumulation of
particles at the wall leads to a laminarization of the near-wall turbulence.

We have made a more detailed study of the relation between particle concentration
and streamwise velocity fluctuation as function of the distance to the wall. Figure 6
shows the global behaviour of the streamwise velocity fluctuation p.d.f.s as a
normalized contour plot for all z+ in a half channel. When, first, the unconditional
unladen u′-distribution is considered (figure 6a), one can notice that the variance of
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Figure 5. Instantaneous wall-parallel cross-sections of streamwise velocity fluctuations, and
corresponding particle distributions, located at z+ � 5.

u′ becomes relatively large in the energetic buffer region, whereas it reduces to smaller
values close to the wall (no-slip condition) and outer region of the channel. The buffer
region is characterized by the violent, anisotropic character of the flow, generating
most of its turbulent energy. Therefore, to be able to distinguish what part of the
u′-distribution is a result of in- or outrush of fluid motions, the total p.d.f. contour is
divided into two conditional parts: (i) u′(w′ < 0) -distribution, figure 6(b): streamwise
turbulent motion, which is advected towards the wall and (ii) u′(w′ > 0) -distribution,
figure 6(c): streamwise turbulent motion, which is advected towards the channel centre.
These conditional distributions confirm that the streamwise turbulent fluctuations
are about twice as likely to be negatively correlated than positively correlated
with the wall-normal fluctuations, i.e. generating overall a negative turbulent shear
stress.

The u′-distributions of the high mass loading are displayed in figure 6(d–f ). Here
we see that the mass loading has only a small effect on increasing the variance of
u′. At first sight one may think that this small difference is negligible. However,
recall that most of the turbulent energy is essentially located in the tails of a p.d.f.
Figure 6(f ) reveals that most of this enhancement is caused by the more pronounced
increase of slow outward streamwise fluctuations (compared to figure 6c), and that the
inrush of high streamwise momentum fluctuations remains more or less unaffected
by the presence of the particles. To evaluate if this enhancement of the variance
of u′ is a consequence of the momentum exchange between particles and fluid, the
u′-distributions seen at the particle locations are given in figure 6(g–i ). As can be seen
in figure 6(i ), most outward migrating particles within the near-wall region are
segregated in the regions of lower-than-mean fluid velocity fluctuations, confirming,
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Figure 6. p.d.f. contours of streamwise velocity fluctuations, for Reτ = 180: (a–c) unladen
case; (d–i ) φm � 0.65, τ+

p � 58. (a–f ) display p.d.f. (u′) contours obtained from Eulerian

field-description; (g–i ) p.d.f. (u′) contours obtained at the locations of the particles, where the
average streamwise drift velocities (u′)p are shown as dashed lines. Note: for arbitrary fixed z+,
the total integral value of p.d.f. (u′) is normalized and equals unity, while the p.d.f. contours
which make a distinction between wall- and centre-wards motions are normalized according to
their share in constructing p.d.f. (u′), i.e. p.d.f. (u′) = p.d.f. (u′(w′ < 0)) + p.d.f. (u′(w′ > 0)) = 1,
∀ z+.

as was also observed by many others (see e.g. Wang & Squires 1996; Rouson &
Eaton 2001), that the particles are preferentially located within the low-speed streaks.
Unlike the outward migrating particles, which modify the near-wall streaky flow
structures, the incoming particles (Wp < 0) have only a small positive streamwise
drift-velocity, indicating a less pronounced tendency to segregate into specific flow
regions. This difference in behaviour between in- and outward migrating particles
shows that incoming particles are less effective in modifying ‘directly’ their local fluid
surroundings, yielding a smaller pseudo-turbulence contribution than is found for the
outward migrating particles.

Figures 7(a–c) and 8(a–c) depict the instantaneous distributions of QA in the
viscous sublayer at two distances from the wall. As can be seen, the distributions gain
a much finer structure with increasing particle mass loading (particularly in the direct
vicinity of the wall). To understand this change of QA with mass loading more readily,
we can alternatively express the second invariant through taking the divergence on
the Navier–Stokes equations (multiplied by −1/2), leading to the two-way coupled
Poisson equation for pressure

QA = −1

2

∂Ui

∂xj

∂Uj

∂xi

=
1

2

∂2P

∂x2
i

− 1

2

∂Fi

∂xi

. (4.1)
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Figure 7. Effect of mass loading on instantaneous wall-parallel snapshots, located at z+ � 1.
Test cases Reτ = 180, τ+

p � 58: (a) and (d ) O3.3: one-way coupling; (b) and (e) R3.3: φm � 0.16;
(c) and (f ) R3.4: φm � 0.65. (a–c) QA; (d–f ) RA.

From (4.1), it becomes clear that QA reflects the difference between the pressure and
‘direct’ particle forcing terms. We found that an increasing mass loading has generally
a smoothing effect on the pressure contribution (see Bijlard 2009). Therefore the
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Figure 8. Effect of mass loading on instantaneous wall-parallel snapshots, located at z+ � 5.
Test cases Reτ = 180, τ+

p � 58: (a) and (d ) O3.3: one-way coupling; (b) and (e) R3.3: φm � 0.16;
(c) and (f ) R3.4: φm � 0.65. (a–c) QA; (d–f ) RA.

observed modifications in QA are probably the result of the local forcing term.
Inward-migrating particles are more uniformly distributed and experience relatively
large slip velocities. Outward migrating particles are, on the other hand, larger
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in number but prefer to accumulate in the low-speed regions. Due to this massive
collective behaviour of the outward migrating particles the dynamics of the low-speed
regions become increasingly dictated by the dispersed phase. Since the distribution of
QA gains a much finer structure with increasing particle mass loading, it indicates that
particularly the inward-migrating particles are better capable of disrupting the local
turbulent velocity field, i.e. producing, on average, much larger velocity gradients than
the outward migrating particles.

The corresponding instantaneous distributions of RA are displayed in figures 7(d–f )
and 8(d–f ). The figures show that in the direct vicinity of the wall (z+ � 1), the
value of RA does not change much with increasing mass loading. However, at larger
distances from the wall (z+ � 5), this value decreases strongly with increasing mass
loading. This is consistent with the enhanced laminarization effect with increasing
φm. Indeed for the one-way coupled simulation (figures 7d and 8d ), the intense
vortex-stretching regions (RA < 0) become progressively more developed at greater
distances from the wall, i.e. stronger, elongated and parallel with the flow direction
(similar results were obtained by Blackburn et al. (1996). However, this does not
hold anymore as the mass loading becomes significant (figures 7f and 8f ). This
indicates that any intense vortex-stretching region becomes essentially annihilated by
the presence of the particles. Combining the observations of QA and RA shows that
the small-scale dynamical modifications in the viscous sublayer are a result of the
local energy exchange of the particles with their surrounding fluid. Our results for
QA and RA reveal clearly that an increasing particle mass loading suppresses new
born vortex-stretching regions in the viscous sublayer by fragmenting them, leading
to smaller structures that become naturally exposed to the final molecular destruction
process.

4.3. Buffer region

Figure 9 shows again the volume-averaged invariant distributions in the buffer region
(5 <z+ � 35) for the one-way coupling and two-way coupling cases for two different
mass loadings. When, first, the one-way coupled joint p.d.f. is considered (figure 9a),
one can notice (in agreement with other wall-bounded studies, see Blackburn et al.
1996 and Rouson & Eaton 2001) that: (i) within the buffer region the velocity-
gradient contributions are significantly larger than in the viscous sublayer and (ii) the
maximum values of the invariants have an even more pronounced preference for the
second and fourth topological quadrants. The corresponding joint p.d.f.s conditionally
sampled at the particle locations (figure 9b, c) do not show any significant differences
compared with the distribution at the grid points. This behaviour is consistent with
the results of Rouson & Eaton (2001).

The effect of two-way coupling due to an increasing mass loading reveals that
the addition of particles reduces considerably the size of the invariant distributions
(figure 9a→d→g). As can be noticed in figure 9 the joint p.d.f.s of the fluid at the
particle locations are practically identical with the corresponding distributions of the
fluid at the grid points. This reduction in size of the invariant distribution in the buffer
region is caused by the strong laminarization effect of the particles on the viscous
sublayer.

4.4. Logarithmic layer

Figure 10 shows the two-way coupling effect on the joint p.d.f.s in the logarithmic layer
(35 <z+ � 150). As can be noticed, the shape of the local flow topology distributions
has a strong resemblance with the ones observed in the buffer region. It was also
found that the intermediate inertia particles (τ+

p � 28 and τ+
p � 58) have a stronger
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Figure 9. Particle mass loading effect on the QA–RA plane, for the buffer region
(5 < z+ � 35). Similar notation has been used as figure 4.

suppressing effect on the invariant distributions than the lighter and heavier particles.
This is due to two effects, namely: (i) these particles segregate preferentially in
the low-speed streaks and (ii) the acceleration of these particles, when migrating
outwards, is on average relatively slow. At large wall distances they still withdraw
a significant amount of momentum from their surrounding fluid. The joint p.d.f.s
sampled conditionally at the particle locations (Wp � 0) indicate that the outward
migrating particles preferentially stay in more active turbulent regions, while the
inward-migrating particles show an opposite trend.

Wall-parallel instantaneous snapshots for QA and RA are shown in figure 11. As
can be seen the particles have a strong damping effect on these quantities (as found
at z+ =5).

4.5. Outer region

Figures 12 and 13 show the two-way coupling effect on the joint p.d.f.s in the outer
region of the channel (150 < z+ <Reτ ). Like the adjacent channel regions we notice
that the turbulence activity reduces as φm increases. The shape of the local flow
topology remains approximately maintained, indicating that the turbulence structures



52 M. J. Bijlard, R. V. A. Oliemans, L. M. Portela and G. Ooms

2.0(a)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

QA

2.0(b)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
<

 0
)

2.0(c)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
>

 0
)

2.0(d)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

QA

2.0(e)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
<

 0
)

2.0(f)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
>

 0
)

2.0(g)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

QA

2.0(h)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
<

 0
)

2.0(i)
1.5
1.0
0.5

0
–0.5
–1.0

–1.5

–2.0
–1.0 –0.5 0 0.5 1.0

Q
A
(W

p 
>

 0
)

RA RA(Wp < 0) RA(Wp > 0)

Figure 10. Particle mass loading effect on the QA–RA plane, for the ‘logarithmic’ region
(35 < z+ � 150). Similar notation has been used as figure 4.

undergo a fairly uniform damping. It should be emphasized that this uniform damping
is not directly caused by the presence of the particles; because (i) most turbulent energy
is transported from the strongly modified wall region towards the centre region (in the
centre region the production of turbulence is very small), (ii) the particle concentration
is very dilute and (iii) the particle-fluid momentum exchange is small-to-modest.

The joint p.d.f.s sampled conditionally at the particle positions (figures 12 d–f and
13 d–f ) show, regardless of the two-way coupling mechanism, that the particles are
preferentially located in less active turbulent regions. Furthermore, the distributions
of the τ+

p � 58 inertia particles are similar but smaller in size than their corresponding
distributions sampled at the grid points. The local flow topology seen by lighter
inertia particles τ+

p � 14 and τ+
p � 28, however, do not show such uniform decrease in

size. These particles have a stronger tendency to be located in the fourth topological
quadrant. These findings are in contrast with the one-way coupling results reported
by Rouson & Eaton (2001). They found essentially no St-dependent differences.

A better agreement is found when we compare our results with the forced-isotropic
particle-laden turbulence study performed by Squires & Eaton (1991). In their
modest parameter study (containing three Stokes numbers: St

K
� 0.325/0.65/2.27),
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Figure 11. Instantaneous snapshots of QA and RA corresponding to figure 10. Similar
notation used as figure 7.
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(d ) R3.1: Reτ =180, φm � 0.16, τ+

p � 14; (b) and (e) R3.3: Reτ = 180, φm � 0.65, τ+
p � 14;

(c) and (f ) R5.1: Reτ = 250, φm � 0.16, τ+
p � 28. The grey scales denote a logarithmic decade,

ranging over six decades.
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Figure 13. Two-way coupling effects on normalized joint p.d.f. of QA,RA, in the outer region
150 <z+ <Reτ . (a–c) sampled at the grid locations; (d–f ) sampled at particle locations.
(a) and (d ) O3.3: one-way coupling; (b) and (e) R3.3: φm � 0.16, τ+

p � 58; (c) and (f ) R3.4:

φm � 0.65, τ+
p � 58. The grey scales denote a logarithmic decade, ranging over six decades.
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they reported that particularly the particles with an inertia of St
K

� 0.65 cause a
significant bias in trajectory towards regions of low vorticity and high strain rate,
i.e. QA < 0. A straightforward comparison is, however, rather difficult to make, mainly
because (i) our centreplane statistics cannot be treated as isotropic and (ii) their
topology study is based on a somewhat older classification scheme (see Wray & Hunt
1989) that uses only the second invariant plus some additional, ambiguous thresholds).
Despite these differences our result for the light particles St

K
� [0.8–1.5] supports their

findings, and moreover, the well-accepted physical ideas that particularly these kind
of inertia particles spiral away from vortex cores due to centrifugal effects, while
lighter or heavier inertia particles give rise to a more random behaviour. Additional
to their, and many other, particle-laden studies is that our invariant distributions may
suggest that light particles with St

K
≈ 1.0 have a tendency to accumulate near vortex

sheets. The reason is that the fourth topological quadrant corresponds to local flow
topologies where biaxial strain is dominant, and this is commonly associated with
vortex-sheet formation (see Batchelor 1953).

5. Conclusion
In the viscous sublayer the local flow topology becomes increasingly more two-

dimensional, switching between either strong vortical motions or strong strain regions,
as two-way coupling effects increases. This highly intermittent small-scale behaviour
is strongly associated with the large particle accumulation into the elongated streaks
near the wall, enlarging the contrasts between the streamwise-elongated low- and
high-speed regions of the flow. This streaky particle segregation causes an increasing
annihilation of the intense vortex-stretching regions by ‘prematurely’ fragmenting
them; hence preventing a normal development of near-wall turbulence. Beyond the
viscous sublayer the modifications in the invariant maps do not appear to be strongly
related with the preferential concentration of the particles, which is in contrast to
previous channel flow simulations. The reducing effect on the invariant distributions
of the fluid by the particles is merely reflecting the indirect effects of the overall
particle–turbulence interaction, and is mostly a result of the overall changing near-
wall dynamics.
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